Вентиляция в бассейне частного дома: пошаговая инструкция и полезные советы

Szellőzés egy magánház medencéjében: lépésről lépésre és hasznos tippek

Содержание

Микроклимат бассейна

Устройство вентиляции бассейна – крайне важный фактор создания комфортного для человека микроклимата. Отсутствие качественной вентиляционной системы приводит к быстрому распространению грибка и плесени, а накопление в воздухе большого числа микроорганизмов приводит к возникновению различных заболеваний.

Szellőzés egy magánház medencéjében: lépésről lépésre és hasznos tippek
Повышенная влажность в закрытом помещении бассейна приводит к коррозии металлических и гниению деревянных конструкций, разрушению грибком отделки и стен

Влажность в помещении бассейна должна находиться на уровне 50–60%, в этом случае достигается умеренный уровень испарения влаги с поверхности воды, что влияет на условия комфорта в помещении. При данной влажности и температуре воздуха 28—30 °С (характерная для помещений бассейнов температура) роса будет образовываться при 16—21 °С. Это заметно выше чем для обычных помещений, в которых температура воздуха находится на уровне 24 °С, влажность 50%, точка образования росы на уровне 13 °C. Для помещений бассейнов превышение влагосодержания воздуха считается нормой.

Температура и влажность воздуха для бассейна

Рекомендуемые параметры воздуха в помещениях крытых бассейнов:

  • Вода в бассейне в пределах 24–28 °С.
  • Воздух в помещении бассейна должен быть на 2–3 °С выше температуры воды. При снижении температуры воздуха возникает опасность простуды. При повышении влажности возможно возникновение ощущения духоты. Также не рекомендуется снижать температуру воздуха ночью в целях экономии энергии, так как повышается расход тепла.
  • Во избежание сквозняков, рекомендуемая скорость движения воздуха должна находиться в пределах 0,15–0,3 м/с.

Все эти и многие другие условия принимаются во внимание при проектировании, и предлагаются решения для снижения конденсации влаги на потолке и стенах. Сложность ситуации состоит в том, что когда люди, к примеру, в ночное время не используют бассейн, тепло и влажность никуда не исчезают. Бассейн не получится «выключить» на ночь. Единственной возможностью снизить количество испарений, использовать покрытия поверхности воды, но данные устройства недолговечны и редко используются.

Скорость испарения воды с поверхности бассейна в зависимости от способа его эксплуатации

Тип бассейна Пустой С купающимися
Обычный или скиммерный бассейн 10-20 грамм/м²/час 130-270 грамм/м²/час

При достижении уровня 80–90% влажности при температуре 29–30 °С, возникает риск обострения хронических заболеваний, резкого ухудшения самочувствия. Поэтому, при правильно рассчитанной и спроектированной схеме вентиляции частного бассейна, из воздуха удаляется излишняя влага, он очищается за счёт интенсивного воздухообмена, но при этом не пересушивается.

Осушение воздуха до нужных параметров осуществляется осушителями, по параметрам влаговыделения. Осушители бывают моноблочными и встроенными в систему вентиляции (при рекуперации воздуха).

Нормативные требования и рекомендации по проектированию

В частных коттеджах на стадии проектирования следует принимать температуру воды в соответствии с российскими нормами [1–4] на уровне 30–32 °С, а температуру воздуха на 1–2 °С выше температуры воды. Европейскими стандартами [5, 6] рекомендуется температура воды для плавательных бассейнов 28 °С, а температура воздуха – на 2–4 °С выше температуры воды, но не выше 34 °С. Верхний допустимый предел относительной влажности установлен равным 65 %, интенсивность воздухообмена – по расчету, но не менее 80 м3/ч на одного купающегося, скорость движения воздуха не более 0,2 м/с.

Согласно нормативным документам системы воздухообмена в залах ванн бассейнов должно исключать образование застойных зон при преобладании вытяжки над притоком в объеме не более 0,5-кратного обмена. Система вентиляции – приточно-вытяжная с механическим побуждением, автономная, самостоятельная (не связанная с системой вентиляции остальной части коттеджа). Для залов ванн рекомендуется подбирать вентиляционные установки из расчета их работы в двух режимах: самостоятельные приточные и вытяжные установки, предназначенные только для нерабочего периода бассейна, и дополнительные установки, которые совместно с первыми должны в период работы бассейна обеспечить расчетный воздухообмен.

Вытяжные шахты следует оборудовать утепленными клапанами с электроподогревом и дистанционным управлением, а также поддонами для сбора и удаления конденсата. К клапанам и поддонам следует обеспечивать удобный доступ обслуживающего персонала. Размеры внутреннего сечения шахт определяются по расчету с учетом гравитационного и ветрового напора и давления, создаваемого приточной вентиляцией.

Уровень шума в залах не должен превышать 60 дБ(А).

Особенности проектирования частных бассейнов

Каждый бассейн в коттедже строится по индивидуальному проекту, с индивидуальным объемно-планировочным решением, с уникальным художественным оформлением. Основное требование: максимальный уровень физиологического и психологического комфорта.

За последние 10 лет, путем проб и ошибок, выявились общие черты благополучного частного бассейна.

Обычно зал ванны бассейна размещается в пристроенном одно-этажном здании, единственный вход в зал ведет из дома через вспомогательные помещения, площадь зеркала бассейна от 18 до 50 м2, ширина обходных дорожек вокруг ванны от 1 до 3 м, высота бассейна от 4 до 6 м, водяное отопление по периметру остекления, большая площадь остекления, стеклянная дверь с выходом на веранду.

Режим использования бассейна кратковременный, эпизодический, число купающихся один-два человека. Все чаще применяется зашторивание водной поверхности бассейна.

Система воздухораспределения проектируется, как правило, под давлением архитектурно-художественного оформления потолков и стен зала. Далеко не всегда удается выполнить привычные рекомендации:

– влажный воздух, как наиболее легкий, рекомендуется удалять из верхней зоны;

– площадь вентиляционных решеток должна быть достаточно большой, чтобы обеспечивать рекомендуемые скорости движения воздуха;

– желательно стремиться к реализации принципа вытеснительной вентиляции.

На мой взгляд, практика применения в частных бассейнах напольных приточных решеток или настенных приточных решеток в нижней зоне зала бассейна не оправдала себя: слишком часто ощущался дискомфорт от движения воздуха, что объясняется малыми размерами зала и близость вентиляционных решеток к «рабочей зоне».

Два ограничения на выбор относительной влажности воздуха в частном бассейне

Хотя российскими нормативными документами допускается высокая относительная влажность воздуха, до 65 %, существуют два фактора, вынуждающие снижать это значение для частных бассейнов до уровня 50–45 % и ниже.

Один из упомянутых факторов – дискомфорт, ощущение духоты.

Другой фактор – выпадение конденсата на стенах, окнах, конструкциях.

Ранее сообщалось [12], что низкая относительная влажность до 15–20 % не оказывает отрицательного влияния на самочувствие и здоровье людей.

Оптимальный уровень влажности

Комфортный уровень влажности воздуха в бассейне не должен превышать 65%. Чтобы понизить влажность до оптимального уровня, можно использовать осушающую установку, приточно-вытяжную вентиляцию, или и то, и другое вместе. Для осушения воздуха используют два метода: конденсацию и ассимиляцию:

  1. Конденсация представляет собой метод, при котором воздух пропускается через осушитель, где его температура достигает точки росы. После конденсации влаги воздух прогревается и возвращается в помещение. При этом необходима теплоизоляция всех воздуховодов для предотвращения стекания конденсата внутри помещения. Часто вентиляция бассейна в коттедже с такой установкой оснащена гигростатом, запускающим компрессор тогда, когда влажность достигает определённого уровня. Когда влажность понизится, компрессор автоматически отключается. Вентилятор при этом продолжает работать. Конденсационные осушители бывают трёх видов: настенными, скрытыми, стационарными. Для последнего типа требуется отдельное помещение или встраиваются в приточно-вытяжную систему.
  2. Работа приточно-вытяжных устройств по принципу ассимиляции основана на свойстве воздуха вбирать водяные пары. Преимущество метода ассимиляции состоит в эффективном очищении воздуха, но есть два недостатка. Первый связан с зависимостью от погоды: при высоком уровне влажности атмосферы воздух, попадая в помещение бассейна, не впитывает в себя влагу. Второй недостаток заключается в том, что приточный воздух необходимо нагревать.

интенсивность испарения воды
Интенсивность испарения воды с поверхности бассейна (литров/квадратный метр в час)

Оптимальным вариантом для поддержания необходимого уровня влажности помещения бассейна, специалисты считают комбинированный метод осушения с использованием принудительной установки и осушителя. Однако, этот метод эффективен только для малых объёмов чаши, и требует тщательного расчёта, иначе могут возникнуть проблемы с решением вопроса (отказ техники, неопытное подключение системы и др.).

Требование максимального комфорта

В европейских стандартах [5, 6] указывается, что относительная влажность должна лежать в области физиологического комфорта. При слишком высокой относительной влажности возникает ощущение духоты. Верхний предел комфортного состояния неодетого человека соответствует парциальному давлению водяных паров 2,27 кПа (влагосодержание при этом давлении составляет 14,3 г/кг сухого воздуха). Для избежания дискомфорта при высокой температуре воздуха относительную влажность следует снижать (табл. 1).

Таблица 1
Зона дискомфорта при высокой влажности воздуха
Относительная
влажность j, %
Влагосодержание, d, г/кг сухого воздуха
при температуре воздуха, °С
30 31 32 33 34
40 11,0 11,7 12,4 13,2 14,0
45 12,4 13,1 14,0 14,9 15,8
50 13,8 14 ,6 15,5 16,5 17,5
55 15,1 16,1 17,1 18,2 19,3
60 16,5 17,5 18,6 19,8 21,0
65 17,9 19,0 20,2 21,5 22,8
100 27,5 29,2 31,0 33,0 35,0

Выпадение конденсата, точка росы

Значения точки росы (температуры, ниже которой неизбежно выпадение конденсата) приведены в табл. 2.

Таблица 2
Точка росы, tт.р.
t, °C воздуха Относительная влажность воздуха, j, %
40 45 50 55 60 65
30 13,9 16 17,7 19,7 21,3 22,5
32 16 17,9 19,7 21,4 22,8 24,3
34 17,2 19,2 21,4 22,8 24,2 25,7
Таблица 3
Предельно допустимые значения сопротивления теплопередаче
наружных ограждений из условия отсутствия конденсата R, м2 • °C/Вт
t, °C воздуха Относительная влажность воздуха, j, %
40 45 50 55 60 65
30 0,400 0,460 0,523 0,625 0,740 0,858
32 0,417 0,473 0,542 0,629 0,725 0,866
34 0,411 0,466 0,547 0,616 0,704 0,831

Достаточным условием отсутствия конденсации паров на внутренних стенах и окнах является превышение температуры внутренних поверхностей tпов. над точкой росы tт.р.: tпов. > tт.р..

Это условие легко преобразовать в требование к сопротивлению теплопередаче наружных ограждений. Если пренебречь лучистым теплообменом между поверхностью воды в бассейне и внутренними поверхностями ограждений, то:

R > (tв. – tн.в.) /aвн. /(tв. – tт.р.), (1)

где R – сопротивление теплопередаче, м2 • °C/Вт:

R = 1/aн + Sdі/ lі + 1/aв, (2)

где tв. – температура воздуха в бассейне, °C;

tн.в. – температура наружного воздуха, °C;

dі / lі – термические сопротивления отдельных слоев ограждения;

aн – коэффициент теплоотдачи наружной поверхности ограждений, Вт/(м2 • °C);

aвн. – коэффициент теплоотдачи внутренней поверхности ограждений, Вт/( м2 • °C).

Наиболее напряженная ситуация возникает при самой низкой температуре наружного воздуха, например, для Москвы расчетное значение равно –26 °C. В табл. 3 приведены расчетные предельные (исходя из условия отсутствия конденсата) значения сопротивления теплопередаче наружных ограждений, в том числе стеклопакетов и фонарей, при значении коэффициентов aвн. = 8,7 и aн = 23 Вт/(м2 • °C). (Лучистый теплообмен не учитывался).

Применяемые в нашей стране стеклопакеты имеют фактическое сопротивление теплопередаче, не превышающее 0,562 м2 • °C/Вт; такую характеристику имеет, например, трехкамерный стеклопакет марки 4–10Ar–4–12Ar–4 с заполнением аргоном. Однако возможно появление еще более эффективных стеклопакетов (R0 > 2 м2 • °C/Вт): нанесение пиролитического низкоэмиссионного покрытия (К-стекло) приводит к снижению потерь тепла за счет излучения почти в 10 раз, низкоэмиссионное покрытие методом магнетронного распыления (i-стекло) позволяет снизить потери на излучение более чем в 20 раз [13]. Следует иметь в виду, что степень остекления наружных ограждающих конструкций залов частных бассейнов может достигать более 60 %.

Сегодня же для частных бассейнов можно рекомендовать применение трехкамерных стеклопакетов и проектировать систему вентиляции и осушения на относительную влажность воздуха не более 50 %.

Осушающий потенциал приточного воздуха

Легко оценить максимальное количество влаги, удаляемой системой вытяжной вентиляции бассейна. В течение всего года температура удаляемого из бассейна воздуха равна 30–34 °С, максимальная относительная влажность не превышает 65 %. Это означает, что с каждым кубометром воздуха из воздушного пространства бассейна удаляется в атмосферу от 20 до 24 г воды (табл. 4).

Таблица 4
Табличные (красный шрифт, [7])
и расчетные параметры влажного воздуха (вытяжная вентиляция)
Температура влажного
воздуха, °С
30 31 32 33 34
Давление насыщенного
водяного пара, бар
0,042417 0,044913 0,047536 0,05029 0,053182
Удельный объем насыщенного
водяного пара, м3/кг
32,929 31,199 29,572 28,042 26,602
Абсолютная влажность
насыщенного воздуха, г/м3
30,37 32,05 33,82 35,66 37,59
Абсолютная влажность
воздуха при j = 65 %, г/м3
19,74 20,83 21,98 23,18 24,43

Количество влаги, поступающее в воздушное пространство бассейна вместе с приточным воздухом, меняется вместе с погодными условиями. В зимнее время при отрицательных температурах наружного воздуха с каждым кубометром приточного воздуха в атмосферу бассейна поступает менее 5 г воды.

В летнее время с повышением температуры и относительной влажности наружного воздуха содержание влаги в нем растет (табл. 5). Например, при расчетных для Москвы параметрах наружного воздуха (температура 28,5 °С и энтальпия 54 кДж/кг) в одном кубометре наружного воздуха содержится 11,19 г воды.

Таблица 5
Табличные (красный шрифт, [7, 8]) и расчетные
параметры влажного воздуха (приточная вентиляция)
Температура влажного воздуха, °С –26 0 5 10 15 20 25 28,5
Давление насыщенного
водяного пара, мбар
0,73 6,11 8,72 12,27 17,04 23,37 31,66 38,91
Удельный объем насыщенного
водяного пара, м3/кг
1542 206,32 147,17 106,42 77,97 57,83 43,40 35,75
Абсолютная влажность
насыщенного воздуха, г/м3
0,65 4,85 6,80 9,40 12,83 17,29 23,04 27,97
Абсолютная влажность
воздуха, г/м3
               
при j = 100 % 0,65              
при j = 90 % 0,59 4,37 6,12 8,46 11,54 15,56 20,74 25,17
при j = 80 % 0,52 3,88 5,44 7,52 10,26 13,83 18,43 22,38
при j = 70 % 0,46 3,40 4,76 6,58 8,98 12,10 16,13 19,58
при j = 60 % 0,39 2,91 4,08 5,64 7,70 10,37 13,83 16,78
при j = 50 % 0,33 2,43 3,40 4,70 6,41 8,65 11,52 13,99
при j = 40 % 0,26 1,94 2,72 3,76 5,13 6,92 9,22 11,19

Разность между соответствующими значениями абсолютной влажности воздуха из табл. 4, 5 означает осушающую способность приточно-вытяжной вентиляции зала бассейна.

При расходе приточного воздуха 1 000 м3/ч и расчетных параметрах в летний период из атмосферы бассейна удаляется за счет вентиляции примерно 11 л воды в час.

Wлето = 1 000 x (21,98 – 11,19) / 1 000 = 10,8 л/ч. (3)

В зимнее время при отрицательных температурах наружного воздуха осушающая способность приточно-вытяжной вентиляции резко возрастает. При расчетной температуре наружного воздуха для зимнего периода в Москве (–26 °С) и расходе приточного воздуха 1 000 м3/ч из атмосферы бассейна удаляется за счет вентиляции примерно 21 л воды в час:

Wзима = 1 000 x (21,98 – 0,65) / 1 000 = 21 л/ч. (4)

Таким образом, в летнее время потребность в приточном воздухе возрастает и упомянутая выше рекомендация [3] предусматривать для бассейнов вентиляцию с переменным расходом (для рабочего и нерабочего периодов работы) получает дополнительное обоснование. Наиболее эффективно применение вентиляционных приточных установок с частотным регулированием производительности, в этом случае приточная установка комплектуется инвертором (преобразователем частоты и напряжения переменного тока).

Интенсивность испарения влаги в бассейнах

Интенсивность испарения влаги зависит от многих факторов. Важнейшими из них являются температура воды и воздуха, относительная влажность воздуха в бассейне, площадь и состояние поверхности испарения.

Таблица 6
Движущая сила процесса испарения воды в бассейне
Температура воды
в бассейне, °C
Ps, Па Температура воздуха
в бассейне, °C
31 32 33 34
(Ps – Pп), Па, j = 65 %
30 4241,7 1322,355 1151,86 972,85 784,87
31 4491,3 1571,955 1401,46 1222,45 1034,47
32 4753,6 1834,255 1663,76 1484,75 1296,77

Движущая сила процесса испарения представляет собой разность давления насыщенных водяных паров при температуре воды в бассейне, Ps, и парциального давления водяных паров над водой, Pп. Для рекомендуемых для частных бассейнов параметров воды и воздуха в табл. 6 приведены значения этой разности давлений.

Из таблицы видно, что интенсивность испарения воды с температурой 30 °С при постоянной относительной влажности 65 % уменьшается на 15 % при повышении температуры воздуха всего на один градус. И наоборот, если температура воздуха в бассейне снизится на 1 градус, то интенсивность испарения увеличится на 15 %. Если температура воды принята равной 30 °С, интенсивность испарения при температурах воздуха 31 и 33 °С отличается на 30 %. Следовательно, осушку атмосферы бассейна легче осуществить при более высокой температуре воздуха внутри бассейна.

Экстенсивные параметры испарения – это параметры, значение которых прямо пропорционально количеству испаряемой влаги. К таким параметрам относится площадь зеркала бассейна, площадь смоченных водой обходных дорожек и водных горок, количество купающихся людей, расход барботируемого воздуха в аттракционах.

Численные значения таких параметров могут изменяться в зависимости от режима эксплуатации бассейна, например, зашторивание водной поверхности бассейна приводит к резкому снижению расчетной площади.

Расчет количества воды, испаряющейся с поверхности бассейна, можно подсчитать по различным методикам. Наиболее распространенные из них изложены в Справочнике проектировщика и в статьях, опубликованных в профильных журналах [9, 10]. Почти все статьи, посвященные этому вопросу, излагают методику расчета немецкого Руководства VDI-Richtlinien. VDI 2089. Blatt 1. 07.1994 [5], которое в 2005 году было заменен на новую редакцию [6], с другими расчетными формулами и коэффициентами [14].

Согласно новой редакции Руководства VDI-Richtlinien. VDI 2089. Blatt 1. 03. 2005 (Техническое оснащение плавательных бассейнов. Закрытые бассейны) [6] количество воды, кг/ч, испаряющейся с поверхности бассейна, можно подсчитать по формуле:

Wисп = b / (R • T) • (Ps – Рп) • F, (6)

где Wисп – расход испарившейся воды, кг/ч;

b – коэффициент влагопереноса, м/ч:

b = 0,7 м/ч для зашторенной водной поверхности бассейна (испарение происходит только с переточных канавок);

b = 7 м/ч для частного неиспользуемого бассейна;

b = 21 м/ч для частного используемого бассейна;

R = 461, 52 Дж/(кг • °С) – газовая постоянная для водяного пара;

T – средняя арифметическая (абсолютная) температура между температурой воды и температурой воздуха в K;

Ps – давление насыщенных паров воды при температуре воды, Па;

Pп – парциальное давление водяных паров в зале чаши бассейна, Па;

F – площадь используемой поверхности зеркала бассейна, м2.

Результаты расчетов по приведенной формуле, выполненные нами для некоторых сочетаний температур воздуха, воды и относительной влажности воздуха в частном используемом бассейне, приведены в табл. 7.

Таблица 7
Интенсивность испарения воды с поверхности используемого бассейна,
г/(ч • м2) (формула (1) на стр. 7 Entwurf (проект) VDI 2089. Blatt 1. 03.2005 [6])
Температура воды, °C Давление нас. пара Ps, Па, [7] Относительная влажность воздуха, % Температура воздуха, °C, / давление нас. пара, Па
30 31 32 33 34
4241,7 4491,3 4753,6 5029 5318,2
28 3778,528 45 281,7 264,3 246,2 227,2 207,3
55 217,8 196,8 174,8 151,8 127,7
65 153,9 129,2 103,4 76,4 48,1
29 4004,3 45 315,2 297,8 279,6 260,6 240,8
55 251,4 230,4 208,4 185,4 161,3
65 187,6 162,9 137,1 110,1 81,8
30 4241,7 45 350,3 332,9 314,7 295,7 275,8
55 286,6 265,6 243,6 220,5 196,4
65 222,9 198,3 172,4 145,4 117,1
31 4491,3 45 387,2 369,7 351,5 332,4 312,5
55 323,6 302,5 280,5 257,4 233,3
65 260,0 235,3 209,4 182,4 154,1
32 4753,6 45 425,8 408,3 390,0 370,9 351,0
55 362,3 341,2 319,1 296,0 271,9
65 298,8 274,1 248,2 221,1 192,8

Расчет количества воды, испаряющейся в водо-воздушных аттракционах (аэромассажные плато, донные гейзеры), можно выполнить по формуле [6]:

Wвозд = Mвозд (dw – dl), (7)

где Wвозд – расход испаряющейся в водо-воздушном аттракционе воды, кг/ч;

Mвозд – расход воздуха в аттракционе, кг/ч;

dw – влагосодержание в выходящем воздухе, кг/кг, равное влагосодержанию насыщенного воздуха при температуре воды;

dl – влагосодержание в воздухе зала, кг/кг.

Расчет количества воды, испаряющейся на водной горке, выполняют по формуле [6]:

Wаттр = b / (R • T) • (Ps – Pп) • L • B, (8)

где Wаттр – количество испаряющейся воды на водной горке, кг/ч;

b – коэффициент влагопереноса для водной горки, м/ч, для используемого бассейна равен 50 м/ч;

L – длина смоченной поверхности водной горки, м;

B – ширина (средняя) смоченной поверхности водной горки, м.

Расчет количества влаги, поступающей от купающихся, обычно выполняют по формуле:

Wл = n • wл, (9)

где Wл – количество влаги, кг/ч;

n – количество купающихся;

wл = 0,225 кг/ч, влагопоступление с одного купающегося.

Конденсационные осушители

Проблему регулирования влажности в частных бассейнах можно полностью решить с помощью осушителей, принцип действия которых основан на конденсации водяных паров на охлаждаемых поверхностях. Более того, некоторые модели таких осушителей имеют устройства для подвода небольшого количества свежего приточного воздуха, достаточного, однако, для соблюдения нормативных требований (80 м3/ч на купающегося). С технической точки зрения конденсационные осушители являются высокотехнологичным оборудованием многоцелевого назначения для неглубокой осушки воздуха. В Советском Союзе такие осушители были разработаны и исследованы в 1970-х годах под названием «механические осушители». Современный рынок предлагает для бассейнов два исполнения осушителей: настенные и канальные, различной производительности.

Существуют несколько причин, мешающих повсеместному и исключительному применению осушителей:

– высокая стоимость начальных и эксплуатационных затрат;

– несоответствие внешнего вида настенного осушителя интерьеру бассейна;

– шум работающего осушителя;

– желание сохранить высокую, сверхнормативную кратность воздухообмена по свежему приточному воздуху, что обеспечивает снижение микропримесей (хлора и др. веществ) до малозаметного уровня.

Осушители канального типа позволяют устранить все претензии по внешнему виду и шуму, поскольку они допускают размещение в технических помещениях бассейна, но необходимая система воздуховодов для рециркуляции воздуха через осушитель и бассейн еще более повышает начальную стоимость системы.

На практике достигнут компромисс: частный бассейн оснащается системой приточно-вытяжной вентиляции согласно требованиям нормативных документов и одним-двумя осушителями для снижения относительной влажности до желаемого уровня. Осушители, снабженные гигростатами, включаются в работу автоматически в случае необходимости. Обычно это происходит в летнее время при пользовании бассейном, когда осушающий потенциал системы вентиляции недостаточен.

Совместное применение вентиляции и осушителей позволяет поддерживать относительную влажность на низком уровне, исключающем дискомфорт и выпадение конденсата на окнах, металлоконструкциях и стенах. Такое сочетание позволяет рассматривать сложные оптимизационные задачи, направленные на достижение минимальных энергозатрат при дополнительных ограничениях как на стадии проектирования, так и в процессе эксплуатации.

Способы поддержания оптимальной температуры воздуха

Температура воздуха в бассейне должна быть выше атмосферной. Часто для этого используются системы отопления: приточный воздух нагревается до температуры, которая поддерживается отопительной системой с применением соответствующих датчиков, что ведёт к удорожанию проекта. Этот способ лучше применять как дополнительный к основной отопительной системе. Наиболее эффективным способом поддержания оптимальной температуры воздуха в бассейне является приточно-вытяжная система с рекуператором тепла. Он отбирает тепло у вытяжного воздуха (35–40%) и отдаёт его холодному приточному воздуху через отфильтрованные системы. При этом необходимо помнить, что тепла возвратного воздуха недостаточно, и в любом случае необходимо установить дополнительный подогрев (электронагреватель, водяной калорифер).

бассейн

Подведя итоги, следует отметить: для создания благоприятного микроклимата внутри помещения бассейна необходимо совершить сложный процесс расчётов, проектирования, установки систем вентиляции. Но на эффективность работы вентиляционной системы влияет множество факторов, между которыми должен соблюдаться определённый баланс, соответствующий нормам воздухообмена, оптимального уровня влажности, температуры воздуха.

Этот процесс требует профессионального подхода к системе вентилирования помещений с бассейном:

  • Кратность приточно-вытяжной вентиляции рассчитывается исходя из конкретных индивидуальных условий.
  • Осушитель воздуха подбирается по параметрам, указанным выше.
  • Обязательно присутствие специалиста.

Оценка статьи: (Пока оценок нет)
Загрузка…Поделиться с друзьями:ТвитнутьПоделитьсяПоделитьсяОтправитьКласснуть Особенности самостоятельного устройства вентиляции в бассейне Ссылка на основную публикацию Особенности самостоятельного устройства вентиляции в бассейне

Расчет и проектирование системы вентиляции частного бассейна.

Бассейны по назначению делятся на:

  • спортивные (плавательные, для водного поло, для прыжков в воду, универсальные);
  • лечебно-оздоровительные (рекреационные);
  • развлекательные (в составе аквапарков);
  • детские (плескательные, для обучения плаванию);
  • «джакузи» (ванна с подводным массажем).


При этом необходимо разделить бассейны массового (общественного) и частного пользования, т. к. принадлежность к одной из этих категорий предъявляет разные требования к проектированию, строительным характеристикам, правилам эксплуатации и обслуживания. Основной особенностью всех систем вентиляции бассейнов является наличие больших влаговыделений. А поддержание достаточно высоких нормативных значений температуры воздуха входит в противоречие со стремлением к повышению энергоэффективности всей системы поддержания микроклимата в бассейне.
В данной статье мы рассмотрим методы проектирования и расчета параметров системы вентиляции частного бассейна. На сегодняшний день это одна из самых массовых категорий бассейнов. Их количество увеличивается с ростом коттеджных поселков вокруг мегаполисов. При этом частные бассейны имеют бесконечное количество вариантов по форме помещения, зеркалу воды, геометрии дна, наличию развлекательных устройств и аттракционов.

Проектирование системы вентиляции бассейна

Проектирование системы вентиляции бассейна представляет собой особую задачу в перечне разделов проектирования зданий и сооружений. Основные требования, предъявляемые к проекту или ТЗ (техническому заданию), содержат описание самого объекта (дома, бассейна): 

  • ориентация по сторонам света;
  • отметки от уровня земли (размещение в цокольном этаже или на первом этаже здания);
  • способ укрытия зеркала бассейна (если оно есть) для уменьшения испарения и конденсации воды; 
  • количество купающихся; 
  • время и частота купания; 
  • источники тепла и холода; 
  • методы осушения воздуха.

Системы кондиционирования, вентиляции и осушения воздуха плавательного бассейна должны решать следующие задачи:

  • обеспечение нормативных параметров воздуха в помещении;
  • обеспечение параметров воздуха вблизи элементов ограждающих конструкций, необходимых для предотвращения конденсации с целью сохранения их несущей способности и внешнего вида;
  • оптимизацию потребления энергоресурсов в зависимости от изменения параметров микроклимата.

Определение площади бассейна

Для владельцев частных бассейнов определение площади бассейна и количества купающихся не является жестким нормативом и может решаться по разному. Традиционный способ (нормативный): количество купающихся примерно равно 1/3 количества людей, находящихся в бассейне. На каждого купающегося требуется минимум 2 м.кв. зеркала воды. Отсюда можно посчитать общую площадь зеркала. 
Другой способ (чаще применяемый) – это формирование формы и площади зеркала воды бассейна исходя из дизайнерского или архитектурного решения. И тогда из этих требований вытекает ТЗ на проектирование чаши бассейна, ограждений, прилегающих технических и подсобных помещений, освещения и т.д. В расчетах по формулам Бязина-Крумме используют коэффициент А (0,5-1 для частных бассейнов), учитывающий количество купающихся и площадь зеркала воды. Не зависимо от способа выбора, проектирование системы вентиляции бассейна ведется уже после определения формы, площади зеркала воды, дорожек, прилегающих площадей, конструктива ограждений, перекрытий, методов защиты водной поверхности от испарения и определения режимов интенсивности использования бассейна. Выбор расчетных параметров воздуха определяется нормативными документами.

Расчет температуры воздуха

Для обеспечения требуемых параметров микроклимата температура воздуха в помещении бассейна должна быть на 1-2°С выше температуры воды в бассейне, но не более 35°С. 
Значение температуры воздуха может быть таким же, как для рекреационных бассейнов: +29…32°С (вода: +28…30°С) или для детских бассейнов: +30…34°С (вода: +29…32°С). В любом случае автоматика вентиляционной системы бассейна должна иметь возможность перенастроить режим в зависимости от желания владельца бассейна.

Расчет относительной влажности воздуха

Значение относительной влажности воздуха следует принимать: 

  • 50-65% — для залов ванн бассейнов по Справочному пособию к СНиП 2.08.02-89 «Общественные здания и сооружения»  (СНиП 31-06-2009* «Общественные здания и сооружения». Актуализированная редакция СНиП 2.08.02-89 «Общественные здания и сооружения» [3]); 
  • для теплотехнического расчета 67% и +29°С.
ВАЖНО! Принять значение относительной влажности – это еще не значит фактически достичь ее. Поэтому необходимо произвести расчет влагопоступлений и осушения воздуха. Если пренебречь этим, то помимо дискомфорта (и развития нежелательных микроорганизмов) от повышенной влажности для находящихся в бассейне людей, можно получить другие, более серьезные проблемы: конденсация воды на окнах и ограждающих конструкциях, приводящая к образованию грибка, плесени, коррозии и гниению материалов ограждающих и несущих (!) конструкций. А это прямой путь к ослаблению несущей способности этих конструкций и как следствие – возможное обрушение.

В качестве примера рассмотрим следующие заданные параметры:

  • Температура воздуха в бассейне: +29°С;
  • Относительная влажность: 65%;
  • Точка росы при этих параметрах: +21°С.

Это означает, что задачей проектировщика в данной ситуации является создание условий, при которых точка росы ограждающих конструкций и перекрытий (стен, потолков, окон) не будет равна или ниже этого значения. 

Расчет влаговыделений бассейна

Источниками повышенной влажности в бассейнах являются:

  • влаговыделения с поверхности воды;
  • влаговыделения с поверхности обходных дорожек;
  • влажный уличный воздух подаваемый приточной установкой (особенно в летнее время);
  • влаговыделения от людей (можно пренебречь, рассматривая частные бассейны, где число купающихся обычно невелико);
  • влаговыдления от водных аттракционов (при их наличии).

Необходимо уточнить, что влаговыделения с поверхности воды учитываются по времени и режимам использования (или не использования бассейна). При не использовании бассейна, унос влаги с поверхности зеркала воды можно уменьшить, применив закрывающиеся жалюзи или полиэтиленовую пузырьковую пленку. Такие защитные устройства снизят унос влаги с поверхности, а также обеспечат экономию при нагреве воды и защитят от случайного попадания в воду предметов, животных или людей.
На интенсивность уноса воды во время купания сложно воздействовать. Эти условия необходимо просто учесть в расчетах, так как количество влаги, уносимой с поверхности, зависит от интенсивности использования бассейна, которая в свою очередь влияет на относительную влажность воздуха в помещении бассейна.

Расчет подвижности воздуха

Для частных бассейнов подвижность воздуха (или скорость его перемещения) должна быть не более 0,2 м/с. Увеличение этого значения может привести к повышенному уносу влаги с поверхности зеркала воды бассейна или дискомфорту отдыхающих возле бассейна, так как увеличение скорости обдува воздухом (даже  комфортной температуры) кожных поверхностей человека приводит к повышенному теплосъему и как следствие – понижение температуры кожи и возможные простудные явления.

Расчет кратности воздухообмена

Кратность воздухообмена – это количество раз, которое объем свежего воздуха  (равный объему помещения) проходит за один час через помещение. Кратность воздухообмена в бассейне предусмотрена нормативными документами и устанавливается расчетом. В основу расчета ложатся следующие параметры:

  • влаговыделения в зале с ваннами бассейна;
  • площадь испарения (зеркало воды, обходные дорожки);
  • коэффициент интенсивности влаговыделений (для рабочего и не рабочего времени);
  • расход наружного воздуха.

Расчет расхода наружного воздуха:

Определение массового расхода воздуха необходимо для ассимиляции влаги, выделяющейся в помещении бассейна. Его определяют по формуле:
 

Формула-1-1(1).png — влаговыделения в зале с ваннами бассейна;
Формула-1-1(2).png — влаговыделения для открытых водяных горок;
Формула-1-1(3).png — влагосодержание внутреннего воздуха в зале с ваннами бассейна, г/кг;
Формула-1-1(4).png — влагосодержание наружного воздуха, г/кг;
Формула-1-1(5).png — парциальное давление водяного пара в наружном воздухе, Па;
Формула-1-1(6).png — параметрическое давление, Па.
   
   
   
   
   
   

Расход наружного воздуха не может быть меньше санитарной нормы в соответствии с СП 60.13330.2012 Актуализированная редакция СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха» (приложение Л) [5]. Согласно СП 31-113 — 2004 «Бассейны для плавания» [4] удельный расход (свежего) приточного воздуха должен быть не менее 80 м³/ч на пловца (купающегося) и 20 м³/ч на зрителя.
Для построения диаграммы необходимо составить тепловой баланс в помещении. Принимаем, что при температуре наружного воздуха +18°С поступления явной теплоты компенсируются равным количеством потерь теплоты:

 

Формула-2-1(1).png — теплопоступления от освещения, Вт;
Формула-2-1(2).png — теплопоступления от солнечной радиации, Вт;
Формула-2-1(3).png — теплопоступления от пловцов, Вт,
Формула-2-1(4).png — теплопоступления от подогреваемых обходных дорожек, Вт


 

Формула-3-1(1).png — коэффициент теплоотдачи обходных дорожек,  Вт/м² х °С (принимают αp= 10 Вт/м² х °С);
Формула-3-1(2).png — площадь влажной поверхности вокруг ванны бассейна, м²;
Формула-3-1(3).png — температура поверхности обходных дорожек, °С;
Формула-3-1(4).png — температура воды, °С;
Формула-3-1(5).png — отвод теплоты к зеркалу воды, Вт;


 

Формула-4-1(1).png — коэффициент теплоотдачи к зеркалу воду, Вт/м² х °С (принимают αw = 4 Вт/м² х °С);
Формула-4-1(2).png — площадь, зеркала воды, м²;
Формула-4-1(3).png — температура воздуха в помещении по сухому термометру, °С;
Формула-4-1(4).png — температура воды, °С;
Формула-4-1(5).png — теплопотери через ограждающие конструкции, Вт.

Расчет системы вентиляции бассейна (Рассмотрим на примере).

Исходные данные: Местонахождение: г. МоскваРазмеры ванны: 
 = 10 х 20 м = 200 м²; 
 = 2,5 х 4 м = 10 м².Температура в ванне (W1) 
= 26°СТемпература в ванне (W2)
 = 32°ССреднесуточные параметры воздуха для теплого периода 18°С и 70%Температура воздуха в помещении 
 = 28°СОтносительная влажность в помещении ϕ= 60%Санитарная норма расхода свежего воздуха для десяти пользователей составляет 800 м³/ч.
Расчет:Определяем расход наружного воздуха для поддержания требуемого уровня влажности (60%). Сравниваем его с расходом воздуха, принятым по санитарным нормам (800 м³/ч) и выбираем большее из этих значений.
=  21 м³/ч (табличное значение для частного бассейна в рабочее время);

= 3363 Па (давление водяных паров насыщенного воздуха, определяем по i-d диаграмме ( Приложение 1 );

= 2269 Па (парциальное давление водяных паров при заданных параметрах воздуха в зале бассейна);
= 461,52 Дж/(кг х К) (газовая постоянная для водяного пара);Т — среднее арифметическое температур воды 
 и воздуха 
 , К;a = 0,4 (коэффициент занятости для небольших плавательных бассейнов)
Определяем влаговыделения с зеркала ванны W1 и  W2 по формуле:

Суммарные влаговыделения с поверхности воды составят:

 
Для проверки полученного значения влаговыделений используют эмпирическую формулу Бязина-Крумме:


Суммарные влаговыделения равны 35,7 кг/ч.Влагосодержание наружного воздуха 
 = 9 г/кг (при 18°С и 70%).Влагосодержание внутреннего воздуха 
 = 14 г/кг (при 28°С и 60%).Массовый расход наружного воздуха, необходимый для ассимиляции влаги, выделяющейся в зале с ваннами с учетом отсутствия аттракционов:

С учетом плотности воздуха 1,19 кг/м³ объемный расход составит 7380/1,19 = 6200 м³/ч. Для быстрой оценки объема влаговыделений и необходимого расхода воздуха можно воспользоваться номограммой на рис.1.
Номограмма для оценки объема влаговыделений и расхода воздуха
Определение расхода наружного воздуха для осушения помещения при 
 = 5 г/кг. Пунктирная линия соответствует большой ванне бассейна W1 с температурой воды 26 °С (рис. 1.1). Интенсивность влаговыделений для частного бассейна 
 = 21 м/ч (рис.1.3).  По графику на рис. 1.4 определяют расход наружного воздуха 28 м³/ч на м². Штрихпунктирная линия соответствует малой ванне бассейна W2 с температурой воды 32 °С. По графику рисунка 1.4 определяем расход наружного воздуха 60 м³/ч на м². Суммарный расход  приточного воздуха, необходимый для ассимиляции влаги, в соответствии с построением на номограмме составит:
L = 28×200+60×10=6200 м³/ч.
Для построения диаграммы необходимо составить тепловой баланс в помещении:

Схема обработки воздуха изображена на рис. 2.
Схема обработки воздуха

Наружный воздух нагревается в приточной установке до температуры 28°С (режим Н-П). Влагосодержание приточного воздуха составляет 9 г/кг. Приточный воздух (точка П) смешивается с воздухом в помещении и удаляется (точка У).

Критерии безопасности

Как и при выполнении всех строительно-монтажных работ, при устройстве системы воздухообмена в индивидуальном жилом доме или коттедже необходимо придерживаться конкретных правил:

  1. Каждый работник должен иметь средства индивидуальной защиты, специальную обувь и одежду.
  2. Рабочие места производства конкретного вида работ должны быть ограждены, упреждая попадание незадействованных в монтаже людей в рабочую зону.
  3. Рабочая зона должна быть освещена.
  4. Под монтируемыми воздуховодами на высоте не должны находиться посторонние работники.
  5. Сварочные работы выполняются работниками с соответствующей квалификацией.
  6. После завершения рабочего цикла электроинструмент должен быть отключен и обесточен.
  7. Работы по монтажу оборудования на высоте запрещается проводить без закрепления и дополнительной страховки стремянок, подмостей.
  8. Выполнение наружных высотных работ в гололед и дождь запрещается.
  9. Все монтажные работы системы воздуховодов необходимо выполнять попарно.

Устройство вентиляции в помещении с бассейном в домашних условиях – дело сложное, требующее определенного уровня знаний и подготовки. Лучшим вариантом выполнения качественной вентиляции будет поручение такого вида работ, как проектирование и монтаж, специалистам соответствующей категории.

Варианты схем вентиляции в бассейне

Профессионально спроектированная и смонтированная система вентиляции в бассейне частного дома должна полностью удалять все испарения воды, поддерживать комфортный микроклимат в помещении.
Приточно-вытяжная система вентиляции в бассейне бывает 2 типов:
1. С рекуперацией тепла.
Вся система изготавливается в одном блоке, который занимает немного места и более экономичен в процессе эксплуатации. Благодаря рекуперативному блоку, экономия электроэнергии составляет до 75%, так как приточный воздух нагревается за счет удаляемого без смешивания с ним. Это способствует поддерживанию температурного режима в бассейне за счет собственного тепла. Мощность применяемых энергетических установок снижается в 2 раза в сравнении с применением раздельной вентиляции.
Такие системы комплектуются следующим обязательным оборудованием:

  • фильтр для очистки воздуха;
  • рекуператор тепла;
  • обогреватель входящего воздуха;
  • приточно-вытяжной вентилятор;
  • система из 2 клапанов, перекрывающая доступ холодного воздуха при выключенной системе.

Как часто бывает, такую систему дополнительно комплектуют осушителем воздуха, автоматикой для регулирования количества водяных паров в воздухе методом включения/отключения осушителя воздуха, температурного режима.
2. С разделением приточных и удаляемых воздушных масс.
Нагнетание свежего и удаление отработанного воздуха производится отдельными энергетическими системами по своим воздуховодам. Такие системы более крупногабаритные, требуют увеличенных эксплуатационных затрат. В домашнем бассейне при отсутствии специального помещения для ее монтажа эту систему вентиляции применять не рационально из-за габаритов.
Оба направления работают синхронно: одно нагнетает атмосферный воздух, второе удаляет отработанный по каналу, оборудованному в период выполнения общестроительных работ. На стороне подачи монтируются:

  • фильтр для очистки поступающего воздуха;
  • нагреватель атмосферного очищенного воздуха;
  • всасывающий вентилятор;
  • блок управления объемом заборного воздуха и его температурным режимом в период подогрева.

Как правило, на вводном канале со стороны улицы устанавливается клапанная система, предохраняющая попадание воздуха из вне в период отключения вентиляции.

Рекомендации по созданию системы вентиляции

Надежность и качественная продуктивность системы вентиляции бассейна закладывается на этапе разработки рабочего проекта, который должен учитывать все нюансы будущей эксплуатации. По законам физики, теплые воздушные массы подымаются вверх, на холодных поверхностях образовывается конденсат.
Оборудование можно устанавливать в соседнем помещении, под чашей водоема, на стене. Приточные каналы чаще размещают по периметру помещения, для быстрого удаления влажного воздуха вверх, где располагаются вытяжные воздуховоды. При этом необходимо учитывать:

  • соблюдение объема поступающего и удаляемого воздуха способствует отсутствию сквозняков;
  • особые типы решеток снижают интенсивность движения воздушных масс без нарушения скорости воздухообмена в помещении, что важно для мест пребывания купальщиков;
  • при наличии окон в помещении, подача воздуха должна осуществляться под окнами, упреждая образование конденсата на стеклах;
  • вытяжные воздуховоды всегда монтируются выше приточных, лучше под потолком, обеспечивая качественное удаление влажного воздуха;
  • пространство между подвесным потолком и капитальным должно обязательно вентилироваться для упреждения образования колоний плесени и грибков;
  • поток нагнетаемого воздуха не должен проходить над водным зеркалом, ведь это снижает испарение с его поверхности;
  • в системе должно быть 2 варианта управления воздушным потоком: автоматический и ручной.

Вентиляция в бассейне
Температура атмосферного воздуха влияет на общие энергозатраты на его обогрев и производительность оборудования. Применяя автоматическую регулировку температурного режима, можно значительно улучшить рациональное использование электрической энергии.
Проектирование, монтаж системы вентиляции лучше поручить выполнять специалистам соответствующего профиля. Это сэкономит средства не только при строительстве бассейна, но и при эксплуатации.

О системах воздухообмена

Приток чистого и удаление отработанного воздуха в бассейнах осуществляется при помощи специально оборудованной вентиляции. На сегодня предусмотрено два варианта организации этого процесса:

  • работающие автономно отдельные приточная и вытяжная системы;
  • единая приточно-вытяжная установка.

Приточная вентиляция


Устройство для такого способа аэрации воздуха устанавливается главным образом во время общих строительных работ по оборудованию водоема.

Основной его элемент – вентилятор, встроенный в вытяжные каналы. Забор воздуха осуществляется при помощи таких приспособлений:

  • устройства для притока воздуха, оборудованного клапаном, препятствующего протоку в помещение холодного воздуха в зимний период, когда оно не работает;
  • воздухоочистительного фильтра;
  • нагревателя воздуха;
  • заборного вентилятора;
  • блока для поддержания температурного уровня и объема заборного воздуха.

ОСОБЕННОСТЬ! Приточная вентиляция подает в помещение свежий воздух. Причем делается это отдельно от избавления уже увлажненного воздуха, которое производится параллельно.

Вытяжная вентиляция

Она предусматривает работу вытяжного вентилятора, который встраивается в подготовленные специально для этого каналы. Сюда же входят воздушный (обратный) клапан, а также система автоматики. Воздух распространяется через специальные воздуховоды, которые производят из оцинкованной стали. Подается и удаляется он через вентиляционные решетки.

Распространению воздуха из бассейна по соседским помещениям и коридорам препятствует специальная настройка системы вентиляции, которая предусматривает увеличение количества отработанного воздуха над приточным.

Установка, отдельно работающих приточной и вытяжной систем, отличается несложным монтажом и сравнительно низкой стоимостью. Главный недостаток такого оборудования — высокое энергопотребление. При этом не во всех случаях оно может решить проблему полноценной вентиляции помещения с высоким уровнем влажности.

Если совместить это оборудование с осушителем воздуха, то эффект может быть намного сильнее. Именно такая схема наиболее приемлема для бассейнов частного сектора.

А вот что касается единой приточно-вытяжной установки, то она, хотя и дорогостоящая, но решает все вентиляционные проблемы искусственных водоемов в комплексе.

Комбинированные системы

Комбинированные агрегаты выполняют несколько функций, имеют довольно громоздкое оборудование, монтируемое в отдельной комнате. Такое оборудование называют климатическим, так как оно поддерживает оптимальный режим эксплуатации в закрытом домашнем бассейне вне зависимости от погодных условий.
Применяемое оборудование в комбинированной вентиляции:

  • приточный и вытяжной вентиляторы;
  • рекуператор;
  • осушитель воздуха;
  • система фильтрации воздуха;
  • оборудование для нагрева воздуха;
  • система клапанов;
  • автоматический блок управления.

Набор оборудования позволяет выполнять одновременно вентилирование, осушение, нагрев воздуха в холодное время года или охлаждение его летом.

Особенности проведения монтажных работ

Разработка проектного решения устройства вентиляции в помещении с бассейном выполняется квалифицированными инженерами с учетом всех необходимых параметров. На этом этапе просчитывается не только самый эффективный вариант по вентилированию, но и обосновывается его экономическая целесообразность.
Систему вентиляции бассейна лучше выполнять независимой от вентиляции всего индивидуального дома или коттеджа.
Работы по устройству вентиляции начинают проводить во время выполнения общестроительных работ: устраивают каналы, прокладывают штробы. Вентиляционные шахты выполняются под потолком помещения с последующей облицовкой отделочными материалами.
Воздуховоды монтируются из пластиковых или металлических профильных труб, изготовленных из оцинкованного листового металла. Последний вариант применяется в случае использования воздуховодов для подогрева помещения.
Схема воздуховодов монтируется так, чтобы была предусмотрена возможность регулировать направление воздушного потока по всему помещению равномерно.
Блок питания не желательно располагать в помещении с повышенной влажностью, лучше – в изолированном помещении. При отсутствии такового – можно использовать пространство чердачного перекрытия.
Система трубопроводов должна иметь свободный доступ для проведения ежегодных профилактических мероприятий – очистки воздуховодов.

Полезные видео

Обзор системы вентиляции:

Подытоживая сказанное, можно с уверенностью сказать, вентиляция бассейна очень важная часть его надежного использования. А применение для этого приточно-вытяжных установок – наиболее приемлемый вариант.

Только для того, чтобы в меру наслаждаться во время купания свежестью и чистым воздухом, необходимо грамотно организовать систему воздухообмена в своем водоеме. Хочется верить, что данный материал вам поможет в этом.

Подводя итоги

Вентиляция в бассейне частного дома – сложная система, при проектировании которой необходим расчет различных формул, знание правильных схем и особенностей воздействия влаги на материалы. Часто жильцы заказывают помощь в специализированных фирмах, однако все можно сделать своими руками. Приведенная выше информация позволит читателю самостоятельно провести всю работу по созданию проекта для своего бассейна, учесть все особенности своей ситуации и упредить лишние расходы.

Источники
  • https://VentingInfo.ru/raspolozhenie/ventilyatsiya-v-bassejne
  • https://www.abok.ru/for_spec/articles.php?nid=3717
  • https://www.promventholod.ru/tekhnicheskaya-biblioteka/ventilyatsiya-v-basseyne-proektirovanie.html
  • https://ksportal.ru/1004-ventilyaciya-v-bassejne-chastnogo-doma.html
  • https://MoreVDome.com/articles/ventilyacionnaya-sistema-bassejnov/
  • https://VentilyaciyaDom.ru/chastnom-dome/v-bassejne-svoimi-rukami.html
[свернуть]
Поделиться:
×
Рекомендуем посмотреть
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять
Политика конфиденциальности
Adblock
detector